efficient allocation. Analysis of efficiency in the context of
resource allocation has been a central concern of economic
theory from ancient times, and is an essential element of
modern microeconomic theory. The ends of economic action
are seen to be the satisfaction of human wants through the
provision of goods and services. These are supplied by
production and exchange and limited by scarcity of resources
and technology. In this context efficiency means going as far as
possible in the satisfaction of wants within resource and
technological constraints. This is expressed by the concept of
Pareto optimality, which can be stated informally as follows: a
state of affairs is Pareto optimal if it 1s within the given
constraints and it is not the case that everyone can be made
better off in his own view by changing to another state of
affairs that satisfies the applicable constraints,

Because knowledge about wants, resources and technology is
dispersed, efficient outcomes can be achieved only by
coordination of economic activity. Hayek (1945) pointed out
the role of knowledge or information, particularly in the
context of prices and markets, in coordinating economic
activity. Acquiring, processing and transmitting information
are costly activities themselves subject to constraints imposed
by technological and resource limitations. Hayek pointed out
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that the institutions of markets and prices function to
communicate information dispersed among economic agents
so as to bring about coordinated economic action. He also
drew attention to motivational properties of those institutions,
or incentives. In this context, the concept of efficiency takes
account of the organizational constraints on information
processing and transmission in addition to those on
production of ordinary goods and services. The magnitude of
resources devoted to business or governmental bureaucracies,
and to some of the functions performed by industrial
salesmen, attests to the importance of these constraints.
Economic analysis of efficient allocation has formally imposed
only the constraints on production and exchange, and until
recently recognized organizational constraints only in an
informal way. But it is these constraints that motivate the
pervasive and enduring interest in decentralized modes of
economic organization, particularly the competitive mecha-
nism.

It is necessary to limit the scope of this essay so that it is not
coextensive with microeconomic theory. The main limitation
imposed here is to confine attention to models in which either
the role of information is ignored, or in which agents do not
behave strategically on the basis of private information. In so
doing, a large and important class of models involving
problems of efficient allocation in the presence of incentive
constraints is excluded.

The main ideas of efficient resource allocation are present in
their simplest form in the linear activity analysis model of
production. We begin with that model.

EFFICIENCY OF PRODUCTION: LINEAR ACTIVITY ANALYSIS

The analysis of production can to some extent be separated
from that of other economic activity. The concept of efficiency
appropriate to this analysis descends from that of Pareto
optimality, which refers to both productive and allocative
efficiency in the full economy in which production is
embedded. It is useful to begin with a model in which
technological possibilities afford constant returns to scale, that
is, with the (linear) activity analysis model of production
pioneered by Koopmans (1951a, 1951b, 1957), and closely
related to the development of linear programming associated
with Dantzig (1951a, 1951b) and independently with the
Russian mathematician Kantorovitch (1939, 1942) and
Kantorovitch and Gavurin (1949).

The two primitive concepts of the model are commodity and
activity. A list of n commodities is postulated; a commodity
bundle is given by specifying a sequence of n numbers a, a,, . . .,
a,. Technological possibilities are thought of as knowledge of
how to transform commodities. Such knowledge may be
described in terms of collections of activities called processes,
much as knowledge of how to prepare food is described by
recipes. A recipe commonly has two parts, a list of ingredients
or inputs and of the output(s) of the recipe, and a description
of how the ingredients are to be combined to produce the
output(s). In the activity analysis model the description of
productive activity is suppressed. Only the specification of
inputs and outputs is retained; this defines the production
process.

Commodities are classified into ‘desired’, ‘primary’ and
‘intermediate’ commodities. Desired commodities are those
whose consumption or availability is the recognized goal of
production; they satisfy wants. Primary commodities are those
available from nature. (A primary commodity that is also
desired is listed separately among the desired commodities and
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must be transformed by an act of production into its desired
form.) Intermediate commodities are those that merely pass
from one stage of production to another. Each commodity can
exist in any non-negative amount (divisibility). Addition and
subtraction of the numbers measuring the amount of a
commodity represent joining and separating corresponding
amounts of the commodity.

An activity is characterized by a net output number for each
commodity, which is positive if the commodity is a net output,
negative if it is a net input and zero if it is neither. The term
input—output vector is also used for this ordered array of
numbers. Activity analysis postulates a finite number of basic
activities from which all technologically possible activities can
be generated by suitable combination. Allowable combinations
are as follows. If two activities are known to be possible, then
the activity given by their algebraic sum is also possible, i.e. if
a=(a,a,,...,a,) and b =(b,b,,...,b,), then a+b=
(a+b,,a,+b,,...,a,+b,) is also possible. Thus, additivity
embodies an assumption of non-interaction between productive
activities, at least at the level of knowledge. Furthermore, if an
activity is possible, then so is every non-negative multiple of it
(proportionality), i.e. if a =(a, a,, ..., a,) is possible, then so
is pa = (pa,, pa,, . . ., pa,) for any non-negative real number u.
This expresses the assumption of constant returns to scale. The
family of activities consisting of all non-negative multiples of a
given one forms a process. Since there is a finite number of basic
activities, there is also a finite number of basic processes, each
intended to describe a basic method of production capable of
being carried out at different levels, or intensities.

The assumptions of additivity and proportionality determine
a linear model of technology that can be given the following
form. Let 4 be an n by k matrix whose jth column is the
input—output vector representing the basic activity that defines
the jth basic process, and let x = (x,, x,, ..., x,) be the vector
whose jth component x; is the scale (level or intensity) of the
jth basic process. Let y =(y,,»,,...,¥,) be the vector of
commodities. Technology is represented by a linear trans-
formation mapping the space of activity levels into the com-
modity space, i.e.

y=Ax x =20.

With the properties assumed, a process can be represented
geometrically in the commodity space by a halfline from the
origin including all non-negative multiples of some activity in
that process. The finite number of halflines representing basic
processes generate a convex polyhedral cone consisting of all
activities that can be expressed as sums of activities in the
basic processes, or equivalently, as non-negative linear
combinations of the basic activities, sometimes called a bundle
of basic activities. This cone is called the production set, or set
of possible productions.

Two other assumptions are made about the production set
itself, rather than just the individual activities. First, there is
no activity, whether basic or derived, in the production set
with a positive net output of some commodity and
non-negative net outputs of all commodities. This excludes the
possibility of producing something from nothing, whether
directly or indirectly. Second, it is assumed that the production
set contains at least one activity with a positive net output of
some commodity.

If the availability of primary commodities is subject to a
bound, the technologically possible productions described by
the production set are subject to another restriction; only those
possible productions that do not require primary inputs in
amounts exceeding the given bounds can be produced.
Furthermore, because intermediate commodities are not
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desired in themselves, their net output is required to be zero.
(Strictly speaking, the technological constraint on intermediate
commodities is that their net output be non-negative. The
requirement that they be zero can be viewed as one of
elementary efficiency, excluding accumulation or necessity to
dispose of unwanted goods.) With these restrictions the model
can be written

y=Ax, x 20, y,=0
if i is an intermediate commodity, and

y,=r; if i isa primary commodity,

where r, is the (non-positive) limit on the availability of
primary commodity i. This leads to the concept of an
attainable activity.

A bundle of basic activities is attainable if the resulting net
outputs are non-negative for all desired commodities, zero for
intermediate commodities and non-positive for primary
commodities, and if the total inputs of primary commodities
do not exceed (in absolute amount) the prescribed bounds of
availability of those commodities. The set of activities
satisfying these conditions is a truncated convex polyhedral
cone in the commodity space called the set of attainable
productions.

The concept of productive efficiency in this model is as
follows. An activity (a bundle of basic activities) is efficient if it
is attainable and if every activity that provides more of some
desired commodity and no less of any other is not attainable.

This concept can be seen to be a specialization of Pareto
optimality. If for each desired commodity there is at least one
consumer who is not satiated in that commodity, at least in
the range of production attainable within the given resource
limitations, then increasing the amount of any desired
commodity without decreasing any other can improve the state
of some non-satiated consumer without worsening that of any
other.

CHARACTERIZING EFFICIENT PRODUCTION IN TERMS OF PRICES

Efficient production can be characterized in terms of implicit
prices, also called shadow prices, or in the context of linear
programming, dual variables. Efficient activities are precisely
those that maximize profit for suitably chosen prices. The
profit returned by a process carried out at the level x is

X Zpiai’

where the prices are p =(p,...,p,),anda = (a,, ..., a,)is the
basic activity defining the process; the profit on the bundle of
activities Ax at prices p is given by the inner product py = pAx.

This characterization is the economic expression of an im-
portant mathematical fact about convex sets in n-dimensional
Euclidean space, namely that through every point of the space
not interior to the convex set in question there passes a
hyperplane that contains the set in one of its two halfspaces
(Fenchel, 1950; Nikaido, 1969, 1970). (A hyperplane in n
dimensional space is a level set of a linear function of n
variables, and thus is a translate of an n — | dimensional linear
subspace. A hyperplane is given by an equation of the form
o X+ ¢x,+ - +¢,x, =k, where the x’s are variables, the ¢’s
are coefficients defining the linear function and k is a constant
identifying the level set. A hyperplane divides the space
into two halfspaces corresponding to the two inequalities
X, +¢x,+ - 4 ¢,x, 3 k respectively.) It can also be seen
that a point of a convex set is a boundary point if and only if
it maximizes a linear function on the (closure of the) set. These

facts can be used to characterize efficient production because
the attainable production set is convex and efficient activities
are boundary points of it. Because the efficient points are those,
roughly speaking, on the ‘north-east’ frontier of the set, the
linear functions associated with them have non-negative
coefficients, interpreted as prices. On the other hand, if a point
of the attainable set maximizes a linear function with strictly
positive coefficients (prices), then it is on the ‘north-east’
frontier of the set.

Figure 1

In Figure I the set enclosed by the broken line and the axes
is the projection of the attainable set on the output
coordinates; inputs are not shown. The point y” in the figure is
efficient; the point y” is not; both y’ and y”” maximize a linear
function with non-negative coefficients (the level set containing
y" is labelled a and also contains y”’). However, " maximizes a
linear function with positive coefficients (one such, whose level
set through )’ is labelled b, is shown), while y”" does not.

These implicit, or efficiency prices arise from the logic of
efficiency or maximization when the relevant sets are convex,
not from any institutions such as markets or exchange. An
important reason for interest in them is the possibility of
achieving efficient performance by decentralized methods. As
described above, under the assumptions of additivity and
constant returns to scale the production set can be seen to be
generated by a finite number of basic processes, each of which
consists of the activities that are non-negative multiples of a
basic activity, the multiple being the scale (level, or intensity)
at which the process is operated. Following the presentation of
Koopmans (1957), each basic process is controlled by a
manager, who decides on its level. The manager of a process is
assumed to know only the input—output coefficients of his
process. Each primary resource is in the charge of a resource
holder, who knows the limit of its availability. Efficiency prices
are used to guide the choices of managers and resource
holders. (Under constant returns to scale, if an activity yields
positive profit at a given system of prices, then increasing the
scale of the process containing that activity increases the
profit. Since the scale can be increased without bound, if the
profitability of a process is not zero or negative, then, in the
eyes of its manager, who does not know the aggregate resource
constraints, it can be made infinite. Therefore, the systems of
prices that can be considered for the role of efficiency prices
must be restricted to those compatible with the given
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technology, namely prices such that no process is profitable
and at least one process breaks even.) Two propositions
characterize efficient production by prices and provide the
basis for an interpretation in terms of decentralized control of
production.

In a given linear activity analysis model, if there is a given
system of prices compatible with the technology, in which
the prices of all desired commodities are positive, then any
attainable bundle of basic activities selected only from
processes that break even and which utilizes all positively
priced primary commodities to the limit of their
availability and does not use negative priced primary
commodities at all, is an efficient bundle of activities.

In a given linear activity analysis model, each efficient
bundle of activities has associated with it at least one
system of prices compatible with the technology such that
every activity in that bundle breaks even and such that
prices of desired commodities are positive, and the price of
a primary commodity is non-negative, zero or non-positive,
according as its available supply is full, partly, or not used
at all (Koopmans, 1957).

These propositions are stated in a static form. There is no
reference to managers raising or lowering the levels of the
processes they control, or to resource holders adjusting prices.
A dynamic counterpart of these propositions would be of
interest, but because of the linearity of the model such
dynamic adjustments are unstable (Samuelson, 1949).

It should also be noted that the concept of decentralization is
not explicitly defined in this literature; the interpretation is by
analogy with the competitive mechanism. Nevertheless, the
interest in characterizing efficiency by prices and their
interpretation in terms of decentralization is an important
theme in the study of efficient resource allocation.

The linear activity analysis model has been generalized in
several directions. These include dropping the assumption of
proportionality, dropping the restriction to a finite number of
basic activities, dropping the restriction to a finite number of
commodities and dropping the restriction to a finite number of
agents. Perhaps the most directly related generalization is to
the nonlinear activity analysis, or nonlinear programming,
model.

EFFICIENCY OF PRODUCTION: NONLINEAR PROGRAMMING

In the nonlinear programming model there is, as in the linear
model, a finite number of basic processes. Their levels are
represented by a vector x =(x, x,,...,x,), where k is the
number of basic processes. Technology is represented by a
nonlinear transformation from the space of process levels to
the commodity space (still assumed to be finite dimensional),
written

y=F(x),x=20.

The production set in this model is the image in the commodity
space of the non-negative orthant of the space of process levels.
Under the assumptions usually made about F, the production
set is convex, though, of course, not a polyhedral cone.

In this model as in the linear activity analysis model a central
result is the characterization of efficient production in terms of
prices. The simplest case to begin with is that of one desired
commodity, say, one output, with perhaps several inputs. In
this case the (vector-valued) function F can be written

F(x) =[/(x), :(x), &(x), ..., gn(x)],

where the value of fis the output, and g, . .., g, correspond
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to the various inputs. Resource constraints are expressed by the
conditions

g(x)=0, for j=1,2,...,m,

and non-negativity of process levels by the condition, x > 0.
(Here the resource constraints r, < h;(x) <0 are written more
compactly as h(x) —r;=g;(x)>0.)

In this model the definition of efficient production given in
the linear model amounts to maximizing the value of f subject
to the resource and non-negativity constraints just mentioned.

Problems of constrained maximization are intimately related
to saddle-point problems. Let L be a real valued function
defined on the set X x Y in R". A point (x*,y*)in X x Yisa
saddle point of L if

Lix, y*) < L{x* y*)< L(x*, y),
for all x in X and all y in Y.

The concept of a concave function is also needed. A real valued
function f defined on a convex set X in R"is a concave function
if for all x and y in X and all real numbers 0 <a < |

Slax + (1 —a)y)zaf(x)+ (1 —a)f(y).
The following mathematical theorem is fundamental.

Theorem (Kuhn and Tucker, 1951; Uzawa, 1958): Let fand g,
g5, - .., 8n be real valued concave functions defined on a convex
set X in R™ If fachieves a maximum on X subject to g;(x) =0,
j=1,2,...,m at the point x* in X, then there exist non-
negative numbers pJ,py,...,py, not all zero, such that
pof(x)+p*g(x)<psf(x*) for all x in X, and furthermore,
p*g(x*)=0. (Here the vectors p* =(p¥, p¥, ...,pk%), and
g(x)=[g(x), g(x), ..., gn(x)].) The vector p* may be chosen
so that

Y pr=1
0

An additional condition (Slater, 1950) is important. (It
ensures that the coefficient p, of fis not zero.)

Slater’s Condition: There is a point x” in X at which g,(x") >0
forall j=1,2,...,m.

If attention is restricted to concave functions, as in the
Kuhn-Tucker, Uzawa Theorem, the relation between con-
strained maxima and saddle points can be summarized in the
following theorem.

Theorem: If f and g;, j=1,2,...,m are concave functions
defined on a convex subset X in R”", and if Slater’s Con-
dition is satisfied, then x* in X maximizes f subject to
g(x)=0, j=12,...,m if and only if there exists

*=(AY, A%, A%), A 20 for j=1,2,...,m, such that
(x*, A*)is asaddle point of L(x, A1) =f(x)+ Ag(x)on X x R",.

This theorem is easily seen to cover the case where some
constraints are equalities, as in the case of intermediate
commodities. The sufficiency half of this theorem holds for
functions that are not concave.

The auxiliary variables 4, 4,,...,4,,, called Lagrange
multipliers, play the role of efficiency prices, or shadow prices;
they evaluate the resources constrained by the condition
g(x) =2 0. The maximum characterized by the theorem is a
global one, as in the case of linear activity analysis.

If the functions involved are differentiable, a saddle point of
the Lagrangian can be studied in terms of first-order condi-
tions. The first-order conditions are necessary conditions for a
saddle point of L. If the functions f and the g’s are concave on
a convex set X, then the first-order conditions at a point
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(x*, A1*) are also sufficient; that is, they imply that (x*, 1*) is
a saddle point of L. Thus,

Theorem: If f, g,, &, - - - , & are concave and differentiable on
an open convex set X in R", and if Slater’s Condition is satisfied,
then x* maximizes f subject to g;(x) >0 for j=1,2,...,m
if and only if there exists numbers A¥, A¥,..., A% such
that the first-order conditions for a saddle point of
L(x, A) =f(x) + Ag(x) are satisfied at (x*, 1*).

If there are non-negativity conditions on the x’s,

g(x)=0, x>0, xinR"

and the first-order conditions can be written

SEHA*gE<0,(fF+4a%gY)x* =
A*g(x*)=0g(x*)>0,g(x*) =0
A*>0 and A*g(x*) =0,

where f * denotes the derivative of f evaluated at x*. In more
explicit notation, the conditions f * + A*g¥ =0 can be written
as

ofjox,+ Y. A*dg,/ox, =0,

Jj=1

i=1,2,...,n

When the assumption of concavity is dropped, it is no longer
possible to ensure that local maximum is also a global one.
However, it is still possible to analyse local constrained maxima
in terms of local saddle-point conditions. In this case a con-
dition is needed to ensure that the first-order conditions for a
saddle point are indeed necessary conditions. The Kuhn-
Tucker Constraint Qualification is such a condition. Arrow,
Hurwicz and Uzawa (1961) have found a number of condi-
tions, more useful in application to economic models, that
imply the Constraint Qualification.

The case of more than one desired commodity leads to
what is called the vector maximum problem, Kuhn and Tucker
(1951). This may be defined as follows. Let f,, f5, ..., f, and
g, 8, --,8, be real valued functions defined on a set X in
R”. We say x* in X achieves a (global) vector maximum of
S=UwSa - i) subject to g(x) =20,/ =1,2,...,mif,

@M g(x"=20,j=12,...,m,

(II) there does not exist x” in X satisfying f,(x") = f;(x*) for
i=1,2,...,k with f,(x")> f,(x*) for some value of i
and g/(x )>0 forj=1,2,...,m

This is just the concept of an efficient point expressed in the
present notation.

A vector maximum has a saddle-point characterization
similar to that for a scalar valued function.

Theorem: Let f|, f5,...,f, and g, g,...,8&, be real valued
concave functions defined on a convex X set in R"
Suppose there is x° in X such that g,(x°)>0,/=1,2,...,m

(Slater’s Condition). If x* achieves a vector maximum of f
subject to g(x) >0 then there exist a =(a,, a,,...,q,) and
A¥ =A%, A%, ...,4%) with ¢, 0 for all j, a #0 and 420
such that (x",,l*) is a saddle point of the Lagrangean
L(x, A) =af(x) + Ag(x).

Several different ‘converses’, to this theorem are known.
One states that if x* maximizes L(x,41*) for some strictly
positive vector a and non-negative A*, and if A*g(x*) =0 and
g(x*) >0, then x* gives a vector maximum of f subject to
g(x) =20, and x in X. Another, parallel to the result for the case
of one desired commodity, is the following.

Theorem: Let f and g be functions as in the theorem above.
If there are positive real numbers a, a,, ..., a, and if (z*, i*¥)
is a saddle point of the Lagrangean L (defined as above) then
(I) x* achieves a maximum of f subject to g(x) > 0 on X, and
an i*g(x* =0

The positive numbers q,, ..., a, are interpreted as prices
of desired commodities, and the non-negative numbers A*
are prices of the remaining commodities. The condition
A*g(x*) = 0 which arises in these theorems states that the value
of unused resources at the efficiency prices A * is zero; that is,
resources not fully utilized at a vector maximum have a zero
price.

The connection between vector maxima and Pareto optima
is as follows. Because a vector maximum is an efficient point
(for the vectorial ordering of the commodity space), it is a
Pareto optimum for appropriately specified (non-satiated) util-
ity functions, as was already pointed out in the case of the linear
activity analysis model. Furthermore, if the functions /i, . . ., f;
are themselves utility functions, and the variable x denotes
allocations, with the constraints g defining feasibility, then a
vector maximum of f subject to the constraints g(x) > 0 and x
in X is a Pareto optimum, and vice versa. Hence the saddle-
point theorems give a characterization of Pareto optima by
prices. The interpretation of prices in terms of decentralized
resource allocation described in the linear activity analysis
model also applies in this nonlinear model. The proofs of
these theorems reveal an important logical role played by the
principle of marginal cost pricing.

The basic theorems of nonlinear programming, especially
the Kuhn—-Tucker-Uzawa Theorem in the setting of the vector
maximum problem, have been extended to the case of
infinitely many commodities. (Hurwicz, 1958, first obtained
the basic results in this field.) Technicalities aside, the theorems
carry over to certain infinite dimensional spaces, namely linear
topological spaces, or in the case of first-order conditions,
Banach spaces.

Dropping the restriction to a finite number of basic processes
leads to classical production or transformation function
models of production, whose properties depend on the detailed
specifications made.

Samuelson (1947) used Lagrangian methods to analyse
interior maxima subject to equality constraints in the context
of production function models, as well as that of optimization
by consumers. He also gave the interpretation of Lagrange
multipliers as shadow prices.

EFFICIENT ALLOCATION IN AN ECONOMY WITH CONSUMERS AND
PRODUCERS

In an economy with both consumption and production
decisions, efficiency is concerned with distribution as well as
production. Data about restrictions on consumption and the
wants of consumers must be specified in addition to the data
about production. The elements of the models are as follows.

The commodity space is denoted X; it might be
/-dimensional Euclidean space, or a more abstract space such
as an additive group in which, for example, some coordinates
are restricted to have integer values. There is a (finite) list of
consumers, 1,2,...,n, and a similar list of producers,
1,2,...,m. A state of the economy is an array consisting of
a commodity bundle for each agent in the economy, consumer
or producer This may be written ({(x')>, <{y')), where
xH=(x', x? x"yand <y’> =(y', ¥% ..., y™ and x' and
y’ are commodlty bundles. Absolute constraints on con-
sumption are expressed by requiring that the allocation {(x")
belong to a specified subset X of the space X" of allocations.
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Examples of such constraints are:

1. The requirement that the quantity of a certain commodity
be non-negative.

2. The requirement that a consumer requires certain
minimum quantities of commodities in order to survive.

Each consumer i has a preference relation, denoted 2z,
defined on X. This formulation admits externalities in con-
sumption, including physical externalities and externalities in
preferences; for example, preferences that depend on the con-
sumption of other agents, termed non-selfish preferences. The
consumption set of the ith consumer is the projection X' of X
onto the space of commodity bundles whose coordinates refer
to the holdings of the ith consumer.

Technology is specified by a production set Y, a subset of X,
consisting of those arrays { y/) of input-output vectors that are
jointly feasible for all producers. The production set of
the jth producer, denoted Y/, is the projection of Y onto the
subspace of X whose coordinates refer to the jth producer.

The (aggregate) initial endowment of the economy is denoted
by w, a commodity bundle in X.

These specifications define an environment, a term introduced
by Hurwicz (1960) in this usage and according to him suggested
by Jacob Marschak. This term refers to the primitive or given
data from which analysis begins. Each environment determines
a set of feasible states. These are the states ({x'), {)’)) such
that (x> isin X, {y’> isin Y and Zx'— Xy’ < w.

An environment determines the set of states that are Pareto
optimal for that environment. Explicitly, they are the states
({x*>,{y*¥>) that are feasible in the given environment, and
such that if any other state ({x'), {y’>) has the property that
(x™y = Lx* for all i with (x> > .{x*") for some i’, then
(x>, {(¥’>) is not feasible in the given environment.

It is important to note that the set of feasible states and the
set of Pareto optimal states are completely determined by the
environment; specification of economic organization is not
involved.

At this level of generality, where externalities in consumption
and production are admitted as possibilities, and where
commodities may be indivisible, no general characterization of
Pareto optima in terms of prices is possible. (Indeed, Pareto
optima may not exist. Conditions that make the set of feasible
allocations non-empty and compact and preferences continu-
ous suffice to ensure the existence of Pareto optima.) In
environments with externalities, or other non-neoclassical
features, Pareto optima are generally not attainable by
decentralized processes (Hurwicz, 1966).

If the class of environments under consideration is restricted
to the neoclassical environments, the fundamental theorems of
welfare economics provide a characterization of Pareto
optimal states via efficiency prices. That characterization has a
natural interpretation in terms of a decentralized mechanism
for allocation of resources.

The framework for these results is obtained by restricting the
class of environments specified above as follows. The
commodity space is to be Euclidean space of / dimensions, i.e.
X = R'. The consumption set for the economy is to be the
product of its projections, i.e. X = X'x X?x --.x X" This
expresses the fact that if each agent’s consumption is feasible for
him, the total array is jointly feasible. Furthermore, each agent
is restricted to have selfish preferences; that is, agent i’s
preference relation depends only on the coordinates of the
allocation that refer to his holdings. In that case the prefer-
ence relation >, may be defined only on X' for each i.
Similarly, externalities are ruled out in production, i.e.
Y=Y'xYix---xY™
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The concept of an equilibrium relative to a price system
(Debreu, 1959) serves to characterize Pareto optima by prices.
A price system, denoted p, is an element of R'; the environment
e =[(X"), (=), (Y’), w] is of the restricted type specified above
(free of externalities and indivisibilities).

‘A state [(x*), (»*)] of e is an equilibrium relative to price
system p if:

1. For every consumer i, x* maximizes preference >, on the
set of consumption bundles whose value at the prices p does not
exceed the value of x* at those prices, ie., if x'is in {x'in
X':px' < px*} then x' <x*.

2. For every producer j, y* maximizes profit py’ on Y’

3. Aggregate supply and demand balance, i.e.

Y xr—Y y¥=w
i J

An equilibrium relative to a price system differs from a
competitive equilibrium (sece below) in that the former does
not involve the budget constraints applying to consumers in
the latter concept. In an equilibrium relative to a price system
the distribution of initial endowment and of the profits of
firms among consumers need not be specified.

The first theorem of neoclassical welfare economics states,
subject only to the exclusion of externalities and a mild
condition that excludes preferences with thick indifference sets,
that a state of an environment e that is an equilibrium relative
to a price system p is a Pareto optimum of e (Koopmans,
1957).

The second welfare theorem is deeper and holds only on a
smaller class of environments, sometimes referred to in the
literature as the classical environments (called neoclassical
above). One version of this theorem is as follows. Let
e =[(X), (=), (Y"),w] be an environment such that for each i

X' is convex.

The preference relation 2z, is continuous.
The preference relation 2=, is convex.
The set Z; Y’ is convex.

P

Let [(x*'), (y*)] be a Pareto optimum of e such that there
is at least one consumer who is not satiated at x*. Then there
is a price system p, with not all components equal to 0, such
that — except for Arrow’s (1951) ‘exceptional case’, where p is
such that for some / the expenditure px*'is a minimum on the
consumption set X' - the state [(x*'), (y*)] is an equilibrium
relative to p.

(The condition that preferences are convex and not satiated
is sufficient to exclude ‘thick’ indifference sets. A preference
relation on X' is convex if whenever x” and x” are points of X'
with x“ strictly preferred to x” then the line segment connecting
them (not including the point x”) is strictly preferred to x”. The
consumption set X* must be convex for this property to make
sense. A preference relation is not satiated if there is no
consumption preferred to all others.)

Hurwicz (1960) has given an alternative formalization of the
competitive mechanism in which Arrow’s exceptional case
presents no difficulties.

If the exceptional case is not excluded, then it can still be said
that:

1. x*' minimizes expenditure at prices p on the upper contour
set of x*/ for every i, and

2. y* maximizes ‘profit’ py’ on the production set Y’, for
every j.

The state (x*, y*) together with the prices p, constitute a
valuation equilibrium (Debreu, 1954).

As in the case of efficiency prices in pure production models,
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these prices have in themselves no institutional significance.
They are, however, in the same way as other efficiency prices,
suggestive of an interpretation in terms of decentralization.

If, in addition to the restriction to classical environments, the
economic organization is specified to be that of a system of
markets in a private ownership economy, and if agents are
assumed to take prices as given, then the welfare theorems can
translate into the assertion that the set of Pareto optima of an
environment e and the set of competitive equilibria for e
(subject to the possible redistribution of initial endowment and
ownership shares) are identical. More precisely, the specifica-
tion of the environment given above is augmented by giving
each consumer a bundle of commodities, his initial endow-
ment, denoted w'. The total endowment is w=Zw'
Furthermore, each consumer has a claim to a share of the
profits of each firm; the claims for the profit of each firm are
assumed to add up to the entire profit. When prices and the
production decisions of the firms are given, the profits of the
firms are determined and so is the value of each consumer’s
initial endowment. Therefore, the income of each consumer is
determined. Hence, the set of commodity bundles a consumer
can afford to buy at the given prices, called his budget set, is
determined; this consists of all bundles in his consumption set
whose value at the given prices does not exceed his income at
the given prices. Competitive behaviour of consumers means
that each consumer treats the prices as given constants and
chooses a bundle in his budget set that maximizes his
preference; that is, a bundle x* in his budget set and such that
if any other bundle x"' is preferred to it, then x" is not in his
budget set.

Competitive behaviour of firms is to maximize profits com-
puted at the given prices p, regarded by the firms as constants;
that is, a firm chooses a production vector y/ in its production
set with the property that any other vector affording higher
profits than py’ is not in the production set of firm j.

A competitive equilibrium is a specification of a commodity
bundle for each consumer, a production vector for each firm,
and a price system, together denoted [(x*), (y*), p*], where
p* has no negative components, satisfying the following
conditions:

1. For each consumer i the bundle x*' maximizes preference
on the budget set of i.

2. For each firm j the production vector y * maximizes profit
p*y’ on the production set ¥/,

3. For each commodity, the total consumption does not
exceed the net total output of all firms plus the total initial
endowment, ie. Zx* —Zy¥<w =Z,w';

4. For those commodities k& for which the inequality in 3
is strict; that is, the total consumption is less than initial
endowment plus net output, the price p} is zero.

The welfare theorems stated in terms of equilibrium relative
to a price system translate directly into theorems stated in
terms of competitive equilibrium. Briefly, every competitive
equilibrium allocation in a given classical environment is
Pareto optimal in that environment, and every Pareto optimal
allocation in a given classical environment can be made a
competitive equilibrium allocation of an environment that
differs from the given one only in the distribution of the initial
endowment. (Arrow (1951), Koopmans (1957), Debreu (1959)
and Arrow and Hahn (1971) give modern and definitive
treatment of the classical welfare theorems.)

It should be noted that the equilibria involved must exist for
these theorems to have content. Sufficient conditions for
existence of competitive equilibrium, which, since a competi-
tive equilibrium is automatically an equilibrium relative to a

price system, are also sufficient for existence of an equilibrium
relative to a price system, include convexity and and continuity
of consumption sets and preferences and of production sets, as
well as some assumptions which apply to the environment as a
whole, restricting the ways in which individual agents may fit
together to form an environment (Arrow and Debreu, 1954;
Debreu, 1959; McKenzie, 1959).

The second welfare theorem involves redistribution of initial
endowment. This is essential because the set of competitive
equilibria from a given initial endowment is small (essentially
finite) (Debreu, 1970), while the set of Pareto optima is
generally a continuum. The set of Pareto optima cannot in
general be generated as competitive allocations without
varying the initial point. If redistribution is done by an
economic mechanism, then it should be a decentralized one to
support the interpretation given of the second welfare
theorem. No such mechanism has been put forward as yet.
Redistribution of initial endowment by lump-sum taxes and
transfers has been discussed. A customary interpretation views
these as brought about by a process outside economics,
perhaps by a political process; no claim is made that such
processes are decentralized. Some economists consider depen-
dence on redistribution unsatisfactory because information
about initial endowment is private; only the individual agent
knows his own endowment. Consequently the expression of
that information through political or other action can be
expected to be strategic. The theory of second-best allocations
has been proposed in this context. Redistribution of
endowment is excluded, and the mechanism is restricted to be
a price mechanism, but the price system faced by consumers is
allowed to be different from that faced by producers; all agents
behave according to the rules of the (static) competitive
mechanism. The allocations that satisfy these conditions, when
the price systems are variable, are maximal allocations in the
sense that they are Pareto optimal within the restricted class
just defined. These are so-called second-best allocations. This
analysis was pioneered by Lipsey and Lancaster (1956) and
Diamond and Mirrlees (1971).

EFFICIENT ALLOCATION IN NON(NEO)CLASS]CAL ENVIRONMENTS

The term nonclassical refers to those environments that fail to
have the properties of classical ones; there may be indivisible
commodities, nonconvexities in consumption sets, preferences
or production sets, or externalities in production or
consumption. An example of nonconvex preference would
arise if a consumer preferred living in either Los Angeles or
New York to living half the time in each city, or living
half-way between them, depending on the way the commodity
involved is specified. A production set representing a process
that affords increasing returns to scale is an example of
nonconvexity in production. A large investment project such
as a road system is an example of a significant indivisibility.
Phenomena of air or water pollution provide many examples
of externalities in consumption and production.

The characterization of optimal allocation in terms of prices
provided by the classical welfare theorems does not extend to
nonclassical environments. If there are indivisibilities, equilib-
rium prices may fail to exist. Lerner (1934, 1947) has proposed
a way of optimally allocating resources in the presence of
indivisibilities. It would typically require adding up consumers’
and producers’ surplus.

Increasing returns to scale in production generally results in
non-existence of competitive equilibrium, because of un-
bounded profit when prices are treated as given. Nash
equilibrium, a concept from the theory of games, can exist

113



efficient allocation

even in cases of increasing returns. The difficulty is that such
equilibria need not be optimal. Similar difficulties occur in
cases of externalities.

Failure of the competitive price mechanism to extend the
properties summarized in the classical welfare theorems to
nonclassical environments has led economists to look for
alternative ways of achieving optimal allocation in such cases.
Such attempts have for the most part sought institutional
arrangements that can be shown to result in optimal
allocation. Ledyard (1968, 1971) analysed a mechanism for
achieving Pareto optimal performance in environments with
externalities. The use of taxes and subsidies advocated by
Pigou (1932) to achieve Pareto optimal outcomes in cases of
externalities is such an example. In a similar spirit Davis and
Whinston (1962) distinguish externalities in production that
leave marginal costs unaffected from those that do change
marginal costs. In the former case they propose a pricing
scheme, but one that involves lump-sum transfers. Marginal
cost pricing, including lump-sum transfers to compensate for
losses, which was extensively discussed as a device to achieve
optimal allocation in the presence of increasing returns
(Lerner, 1947; Hotelling, 1938; and many others) is another
example of a scheme to realize optimal outcomes in
nonclassical environments in a way that seeks to capture the
benefits associated with decentralized resource allocation. In
the case of production under conditions of increasing returns,
the use of nonlinear prices has been suggested in an effort to
achieve optimality with at least some of the benefits of
decentralization. (See Arrow and Hurwicz, 1960; Heal, 1971;
Brown and Heal, 1982; Brown, Heal, Khan and Vohra, 1985;
Jennergren, 1971; Guesnerie, 1975.)

In the case of indivisibilities, and in the context of productive
efficiency, integer programming algorithms exist for finding
optima in specific problems, but a general characterization in
terms of prices such as exists for the classical environments is
not available. A decentralized process, involving the use of
randomization, whose equilibria coincide with the set of
Pareto optima has been put forward by Hurwicz, Radner and
Reiter (1975). This process has the property that the
counterparts of the classical welfare theorems hold for
environments in which all commodities are indivisible, and the
set of feasible allocations is finite, or in which there are no
indivisible commodities, or externalities, but there may be
nonconvexities in production or consumption sets, or in
preferences. This, of course, includes the possibility of
increasing returns to scale in production.

The schemes and processes that have been proposed,
including many not described here, are quite different from
one another. If attention is confined to pricing schemes
without additional elements, such as lump-sum transfers, it
may be satisfactory to proceed on the basis of an informal
intuitive notion of decentralization. This amounts in effect to
identifying decentralization with the competitive mechanism,
or more generally with price or market mechanisms. If a
broader class of processes is to be considered, including some
already mentioned in this discussion, then a formal concept of
decentralized resource allocation process is needed.

EFFICIENT ALLOCATION THROUGH INFORMATIONALLY
DECENTRALIZED PROCESSES

A formal definition of a concept of allocation process was first
given by Hurwicz (1960). He also gave a definition of
informational decentralization applying to a broad class of
allocation mechanisms, based in part on a discussion by
Hayek (1945) of the advantages of the competitive market
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mechanism for communicating knowledge initially dispersed
among economic agents so that it can be brought to bear on
the decisions that determine the allocation of resources.
Hurwicz’s formulation is as follows.

There is an initial dispersion of information about the
environment; each agent is assumed to observe directly his
own characteristic, €', but to know nothing directly about the
characteristics of any other agent. In the absence of
externalities, specifying the array of individual characteristics
specifies the environment, i.e. e =(e',...,e"). When there
are externalities, an array of individual characteristics, each
component of which corresponds to a possible environment,
may not together constitute a possible environment. In more
technical language, when there are externalities the set of
environments is not the Cartesian product of its projections
onto the sets of individual characteristics.

The goal of economic activity, whether efficiency, Pareto
optimality or some other desideratum such as fairness, can be
represented by a relation between the set of environments and
the set of allocations, or outcomes. This relation assigns to
each environment the set of allocations that meet the criterion
of desirability. In the case of the Pareto criterion, the set of
allocations that are Pareto optimal in a given environment is
assigned to that environment. Formally, this relation is a
correspondence (a set-valued function) from the set of
environments to the set of allocations.

An allocation process, or mechanism, is modelled as an
explicitly dynamic process of communication, leading to the
determination of an outcome. In formal organizations
standardized forms are frequently used for communication; in
organized markets like the Stock Exchange, these include such
things as order forms; in a business, forms on which weekly
sales are reported; in the case of the Internal Revenue Service,
income tax forms. A form consists of entries or blanks to be
filled in a specified way. Thus, a form can be regarded as an
ordered array of variables whose values come from specified
sets. In the Hurwicz model, each agent is assumed to have a
language, denoted M' for the ith agent, from which his
(possibly multi-dimensional) message, m', is chosen. The joint
message of all the agents, m = (m',...,m") is in the message
space M = M x - - - x M". Communication takes place in time,
which is discrete; the message m, = (m!, ..., m?) denotes the
message at time ¢. The message an agent emits at time ¢ can
depend on anything he knows at that time. This consists of what
the agent knows about the environment by direct observation,
by assumption, (privacy) his own characteristics, e’ for agent ,
and what he has learned from others via the messages received
from them. The agents’ behaviour is represented by response
Sfunctions, which show how the current message depends on the
information at hand. Agent i’s message at time ¢ is

mi=fim, ,,m_,,...;¢e), i=1,...,n, t=0,1,2,...

If it is assumed that memory is finite, and bounded, it is possible
without loss of generality to take the number of past periods
remembered to be one. (If memory is unbounded, taking the
number of periods remembered to be one excludes the possi-
bility of a finite dimensional message space.) In that case the
response equations become a system of first order temporally
homogeneous difference equations in the messages. Thus:

mi=fi(m,_,;e") i=1,...,n, t=0,...,
which can be written more compactly as
) m=f(m_,;e).

(This formulation can accommodate the case of directed com-
munication, in which some agents do not receive some mes-
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sages; if agent / is not to receive the message of j, then (' is
independent of m/, although m/ appears formally as an argu-
ment.) Analysis of informational properties of mechanisms is to
begin with separated from that of incentives. When the focus
is on communication and complexity questions, the response
functions are not regarded as chosen by the agent, but rather
by the designer of the mechanism.

The iterative interchange of messages modelled by the
difference equation system (*) eventually comes to an end,
by converging to a stationary message. (It is also possible to
have some stopping rule, such as to stop after a specified
number of iterations.) The stationary message, which will be
referred to as an equilibrium message, is then translated into an
outcome, by means of the outcome function:

h: M - Z,

where Z is the space of outcomes, usually allocations or
trades. An allocation mechanism so modelled is called an
adjustment process; it consists of the triple (M, f, h). Since no
production or consumption takes place until all communica-
tion is completed, these processes are tdtonnement processes.

A more compact and general formulation was given by
Mount and Reiter (1974) by looking only at message equilibria
when attention is restricted to static properties. A correspon-
dence is defined, called the equilibrium message correspondence.
It associates to each environment the set of equilibrium
messages for that environment. In order to satisfy the
requirement of privacy, namely that each agent’s message
depend on the environment only through the agent’s
characteristic, the equilibrium message correspondence must
be the intersection of individual message correspondences,
each associating a set of messages acceptable to the individual
agent as equilibria in the light of his own characteristic. Thus
the equilibrium message correspondence

u: E - M,
1s given by
ule)= () u'e,

where p': E'— M is the individual message correspondence of
agent ;. Note that here the message space M need not be the
Cartesian product of individual languages. In the case of an
adjustment process, the equilibrium message correspondence is
defined by the conditions

p'e’)={min M|f'(m;e’)=m},

together with the condition that y is the intersection of the u'.
Specification of the outcome function A: M — Z completes the
model, (M, u, h).

The performance of a mechanism of this kind can be
characterized by the mapping defined by the composition of the
equilibrium message correspondence u and the outcome func-
tion h. The mapping hu; E = Z, possibly a correspondence,
specifies the outcomes that the mechanism (M, p, h) generates
in each environment in E. A mechanism, whether in the form
of an adjustment process, or in the equilibrium form, is called
Pareto-satisfactory (Hurwicz, 1960) if for each environment in
the class under consideration, the set of outcomes generated by
the mechanism coincides with the set of Pareto optimal
outcomes for that environment. Allowance must be made for
redistribution of initial endowment, as in the case of the
second welfare theorem. (A formulation in the framework of
mechanisms is given in Mount and Reiter, 1977).

The competitive mechanism formalized as a static mecha-
nism is as follows. (Hurwicz, 1960, has given a different
formulation, and Sonnenschein, 1974, has given an axiomatic

i=1,...,n

characterization of the competitive mechanism from a
somewhat different point of view.) The message space M is the
space of prices and quantities of commodities going to each
agent (it has dimension n(/ —1) when there are n agents
and / commodities, taking account of budget constraints and
Walras’ Law), the individual message correspondence y' maps
agent /’s characteristic ¢’ to the graph of his excess demand
function. The equilibrium message is the intersection of the
individual ones, and is therefore the price—quantity combina-
tions that solve the system of excess demand equations. The
outcome function A is the projection of the equilibrium
message onto the quantity components of M. Thus hu(e) is a
competitive equilibrium allocation (or trade) when the
environment is e. The classical welfare theorems state that for
eachein E,, h[u(e)] = P(e), where E_ denotes the set of classical
environments and P is the Pareto correspondence. (Allowance
must be made for redistribution of initial endowment in
connection with the second welfare theorem. Explicit
treatment of this is omitted to avoid notational complexity.
The decentralized redistribution of initial endowment is, as in
the case of the second welfare theorem, not addressed.) The
welfare theorems can be summarized in the Mount-Reiter
diagram (Figure 2) (Reiter, 1977).

M

Figure 2

The welfare theorems state that this diagram commutes in the
sense that starting from any environment e in E_ one reaches
the same allocations via the mechanism, that is, via Ay, as via
the Pareto correspondence P.

With welfare theorems as a guide, the class of environments
E, can be replaced by some other class E, and the Pareto
correspondence can be replaced by a correspondence, P,
embodying another criterion of optimality, and one can ask
whether there is a mechanism, (M, pu, h) that makes the
diagram commute, or, in other words, realizes P? Without
further restrictions on the mechanism, this is a triviality,
because one agent can act as a central agent to whom all
others communicate their environmental characteristics; the
central agent then has the information required to evaluate P.

The concept of an informationally decentralized mechanism
defined by Hurwicz (1960) makes explicit intuitive notions
underlying the view that the price mechanism is decentralized.

Informationally decentralized processes are a subclass of
so-called concrete processes, introduced by Hurwicz (1960).
These are processes that use a language and response rules
that allow production and distribution plans to be specified
explicitly. The informationally decentralized processes are
those whose response rules permit agents to transmit
information only about their own actions, and which in effect
require each agent to treat the rest of the economy either as
one aggregate, or in a symmetrical way that, like the
aggregate, gives anonymity to the other agents.
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In the case of static mechanisms, the requirements for
informational decentralization boil down to the condition that
the message space have no more than a certain finite
dimension, and in some cases only that it be of finite
dimension. In the case of classical environments this can be
seen to include the competitive mechanism, and to exclude the
obviously centralized one mentioned above.

Without going deeply into the matter, an objective of this
line of research is to analyse explicitly the consequences of
constraints on economic organization that come from
limitations on the capacity of economic agents to observe,
communicate and process information. One important result
in this field is that there is no mechanism (M, u, h) where u
preserves privacy, that uses messages smaller (in dimension)
than those of the competitive mechanism (Hurwicz, 1972b;
Mount and Reiter, 1974; Walker, 1977; Osana, 1978). Similar
results have been obtained for environments with public
goods, showing that the Lindahl mechanism uses the minimal
message space (Sato, 1981). Another objective is to analyse
effects on incentives arising from private motivations in the
presence of private information; that is, information held by
one agent that is not observable by others, except perhaps at a
cost. (There is a large literature on this subject under the
rubric ‘incentive compatibility’, or ‘strategic implementation’
(Dasgupta, Hammond and Maskin, 1979; Hurwicz, 1971,
1972a). The informational requirements of achieving a
specified performance taking some aspects of incentive
compatibility into account have been studied by Hurwicz
(1976), Reichelstein (1984a, 1984b) and by Reichelstein and
Reiter (1985).

Some important results for non-neoclassical environments
can be mentioned. Hurwicz (1960, 1966, 1972a) has shown
that there can be no informationally decentralized mechanism
that realizes Pareto optimal performance on a class of
environments that includes those with externalities.
Calsamiglia (1977, 1982) has shown in a model of production
that if the set of environments includes a sufficiently rich class
of those with increasing returns to scale in production, then
the dimension of the message space of any mechanism that
realizes efficient production cannot be bounded.

EFFICIENT ALLOCATION WITH INFINITELY MANY COMMODITIES

An infinite dimensional commodity space is needed when it is
necessary to make infinitely many distinctions among goods
and services. This is the case when commodities are
distinguished according to time of availability and the time
horizon in the model is not bounded or when time is
continuous, or according to location when there is more than
a finite number of possible locations; differentiated commodi-
ties provide other examples, and so does the case of
uncertainty with infinitely many states. The bulk of the
literature deals with the infinite horizon model of allocation
over time, though recently more attention is given to models of
product differentiation. Ramsey (1928) studied the problem of
saving in a continuous time infinite horizon model with one
consumption good and an infinitely lived consumer. He used
as the criterion of optimality the infinite sum (integral) of
undiscounted utility. Ramsey’s contribution was largely
ignored, and rediscovered when attention returned to
problems of economic growth. A model of maximal
sustainable growth based on a linear technology with no
unproduced inputs was formulated by von Neumann (1937 in
German; English translation, 1945-6). This contribution was
unknown among English-speaking economists until after
World War II. Study of intertemporal allocation by Anglo-
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American economists effectively began with the contributions
of Harrod (1939) and Domar (1946). These models were
concerned with stationary growth at a constant sustainable
rate (stationary growth paths) rather than full intertemporal
efficiency. Malinvaud (1953) first addressed this problem in a
pioneering model of intertemporal allocation with an infinite
horizon.

Efficient allocation over (discrete) time would be covered by
the finite dimensional models described above if the time
horizon were finite. It might be thought that a model with a
sufficiently large but still finite horizon would for all practical
purposes be equivalent to one with an infinite horizon, while
avoiding the difficulties of infinity, but this is not the case,
because of the dependence of efficient or optimal allocations
on the value given to final stocks, a value that must depend on
their uses beyond the horizon.

Malinvaud (1953) formulated an important infinite horizon
model, which is the infinite dimensional counterpart of the
linear activity analysis model of Koopmans. In Malinvaud’s
model time is discrete. The time horizon consists of an infinite
sequence of time periods. At each date there are finitely many
commodities. All commodities are desired in each time period,
and no distinction is made between desired, intermediate and
primary commodities. As in the activity analysis model, there
is no explicit reference to preferences of consumers. Productive
efficiency over time is analysed in terms of the output available
for consumption, rather than the resulting utility levels.

Technology is represented by a production set X’ for each
time period ¢t = 1,2, ..., an element of X' being an ordered pair
(a',b'*') of commodity bundles where a’ represents inputs to
a production process in period ¢, and b'*!' represents the
outputs of that process available at the beginning of period
{ + 1. Here both @’ and b‘* ! are non-negative. The set X' is the
aggregate production set for the economy during period ¢. The
net outputs available for consumption are given by

y'=b'—a’, fort =1,

where b' is the initial endowment of resources available at the
beginning of period 1. A programme is an infinite sequence
(@', b'*')>; it is a feasible programme if (a‘, b** ') is in X', and
b'—a'>0 for each ¢ > 1, given b'. The sequence y = {y'> is
called the net output programme associated with the given
programme; it is a feasible net output programme if it is the net
output programme of a feasible programme. A programme is
efficient if it is (1) feasible and (2) there is no other programme
that is feasible, from the same initial resources b', and provides
at least as much net output in every period and a larger net
output in some period. This is the concept of efficient prod-
uction, already seen in the linear activity analysis model, now
extended to an infinite horizon model. The main aim of this
research is to extend to the infinite horizon model the charac-
terization of efficient production by prices seen in the finite
model. This goal is not quite reached, as is seen in what follows.

The main difficulties presented by the infinite horizon are
already present in a special case of the Malinvaud model with
one good and no consumers. Let Y be the set of all non-negative
sequenes y = (y,) that satisfy 0<y,=f(a,_,)—aq, for 1 > 1,
and0< y®=5b"'—a® b' > 0, where fis a real-valued continuous
concave function on the non-negative real numbers (the pro-
duction function), f(0) = 0, and b' is the given initial stock. The
set Y is the set of all feasible prorammes. A programme
y"—y >0. A price system is an infinite sequence p = (p‘) of
non-negative numbers. Denote by P the set of all price systems.

Malinvalud recognized the possibility that an efficient net
output programme (y‘) need not have an associated system
of non-zero prices (p') relative to which the production



efficient allocation

Figure 3

programme generating y satisfies the condition of intertemporal
profit maximization, namely that
ptf@)—plazp'tfla)—pla

for all ¢ and every a = 0. (Here (a‘) is the sequence of inputs
producing y.) A condition introduced by Malinvaud, called
nontightness, is sufficient for the existence of such nonzero
prices. Alternative proofs of Malinvaud’s existence theorem
were given by Radner (1967) and Peleg and Yaari (1970).
(An example showing the possibility of non-existence given by
Peleg and Yaari (1970) is as follows. Suppose f is as shown in
figure 3.

At an interior efficient, and therefore value maximizing,
programme the first-order necessary conditions for a maximum
imply p'*!f’(a") = p'. If there is a time at which a’=a*, in an
efficient programme, then, since f’(a*)=0, it follows that
prices at all prior and future times are 0. Nontightness rules out
such examples.)

On the side of sufficiency, Malinvaud showed that inter-
temporal profit maximization relative to a strictly positive price
system p is not enough to ensure that a feasible programme is
efficient. An additional (transversality) condition is needed. In
the present model the following is such a condition;

lim py*=0.

1 —- ©
Cass (1972) has given a criterion that completely characterizes
the set of efficient programmes in a one good model with strictly
concave and smooth production technology that satisfies end-
point conditions 0 < f’'(w0) <1 <f’(x) < oo for some x > 0.
Cass’s criterion, states that a programme is inefficient if and
only if the associated competitive prices — that is, satisfying
p'tif(a)=p'-also satisfy £ (l1/p’) <oo. This criterion
may be interpreted as requiring the terms of trade between
present and future to deteriorate sufficiently fast. Other similar
conditions have been presented (Benveniste and Gale, 1975;
Benveniste, 1976; Majumdar, 1974; Mitra, 1979). It is hard to
see how any transversality condition can be interpreted in terms
of decentralized resource allocation.

An alternate approach to characterizing efficient
programmes was taken by Radner (1967), based on value
functions as introduced in connection with valuation
equilibrium by Debreu (1954). (Valuation equilibrium was
discussed in connection with Arrow’s exceptional case, above.)
The value function approach was followed up by Majumdar
(1970, 1972) and by Peleg and Yaari (1970). A price system
defines a continuous linear functional, (a real-valued linear
function) on the commodity space. This function assigns to a
programme its present value. The present value may not be

well-defined, because the infinite sequence that gives it
diverges. This creates certain technical problems passed over
here. A more important difficulty is that linear functionals
exist that are not defined by price systems. Radner’s approach
was to characterize efficient programmes in terms of
maximization of present value relative to a linear functional on
the commodity space. Radner showed, technical matters aside,
that:

1. If a feasible programme maximizes the value of net output
(consumption) relative to a strictly positive continuous linear
functional, then it is efficient.

2. If a given programme is efficient, then there is a nonzero
non-negative continuous linear functional such that the given
programme maximizes the value of net output relative to that
functional on the set of feasible programmes.

These propositions seem to be the precise counterparts of the
ones characterizing efficiency in the finite horizon model.
Unfortunately, a linear functional may not have a representa-
tion in the form of the inner product of a price sequence with
a net output sequence. (The production function f(a) = a?, with
0 < B8 < 1 provides an example. It is known that the programme
with constant input sequence x, = (1/8)#~! and output se-
quence y, = (1/B)yY¢-1 —(1/B)"# 't =1,2,..., is efficient, and
therefore there is a continuous linear functional relative to
which it is value maximizing. But there is no price sequence (p')
that represents that linear functional.) This presents a serious
problem, because in the absence of such a representation it is
unclear whether this characterization has an interpretation in
terms of decentralized allocation processes; profit in any one
period can depend on ‘prices at infinity’.

This approach has the advantage that it is applicable not
only to infinite horizon models, but to a broader class in which
the commodity space is infinite dimensional. Bewley (1972),
Mas-Colell (1977) and Jones (1984) among others discuss
Pareto optimality and competitive equilibrium in economies
with infinitely many commodities. Hurwicz (1958) and others
analysed optimal allocation in terms of nonlinear program-
ming in infinite dimensional spaces. Theorems of program-
ming in infinite dimensional spaces are also used in some of
the models mentioned in this discussion.

The basic difficulties encountered in the one-good model,
apart from the numerous technical problems that tend to make
the literature large and diverse as different technical structures
are investigated, are on the one hand the fact that
transversality conditions are indispensable, and on the other
the possibility that linear functionals, even when they exist,
may not be representable in terms of price sequences. These
problems raise strong doubt about the possibility of achieving
efficient intertemporal resource allocation by decentralized
means, though they leave open the possibility that some other
decentralized mechanism, not using prices, might work.
Analysis of this possibility has just begun, and is discussed
below.

The difficulties seen in the one-good production model
persist in more elaborate ones, including multisectoral models
with efficiency as the criterion, and models with consumers in
which Pareto optimality is the criterion. McFadden, Mitra and
Majumdar (1980) studied a model in which there are firms,
and overlapping generations of consumers, as in the model
first investigated by Samuelson (1958). Each consumer lives
for a finite time and has a consumption set and preferences
like the consumers in a finite horizon model. A model with
overlapping generations of consumers presents the fundamen-
tal difficulty that consumers cannot trade with future
consumers as yet unborn. This difficulty can appear even in a
finite horizon model if there are too few markets. The
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economy is closed in the sense that there are no nonproduced
resources; the von Neumann growth model is an example of
such a model. Building on the results of an earlier
investigation (Majumdar, Mitra and McFadden, 1976), these
authors introduced several notions of price systems, of
competitive equilibrium, efficiency and optimality, and sought
to establish counterparts of the classical welfare theorems. To
summarize, in the 1976 paper they strengthen an earlier result
of Bose (1974) to the effect that the problem of proper
distribution of goods in essentially a short-run problem, and
that the only long-run problem, one created by the infinite
horizon, is that of inefficiency through overaccumulation of
capital. In the 1980 paper the focus is on the relationships
among various notions of equilibrium and Pareto optimality.
The force of their results is, as might be ecxpected, that the
difficulties already seen in one-good model without consumers
persist in this model. A transversality condition is made part
of the definition of competitive equilibrium in order to obtain
the result that an equilibrium is optimal. A partial converse
requires some additional assumptions on the technology
(reachability) and on the way the economy fits together
(nondecomposability). These results certainly illuminate the
infinite horizon model with overlapping generations of
consumers and producers, but the possibility of efficient or
optimal resource allocation by decentralized means is not
different from that in the one-good Malinvaud model.

Recently, Hurwicz and Majumdar in an unpublished
manuscript dated 1983, and later Hurwicz and Weinberger
(1984), have addressed this issue directly, building on the
approach of mechanism theory.

Hurwicz and Majumdar have studied the problem of
efficiency in a model with an infinite number of periods. In
each period there are finitely many commodities, one producer
who is alive for just one period, and no consumers’ choices.
The criterion is the maximization of the discounted value of
the programme (well-defined in this model). The producer
alive in any period knows only the technology in that period.
The question is whether there is a (static) privacy preserving
mechanism using a finite dimensional message space whose
equilibria coincide with the set of efficient programmes. The
question can be put as follows. In each period a message is
posted. The producer alive in that period responds ‘Yes’ or
‘No’. If every producer over the entire infinite horizon answers
‘Yes’, the programme is an outcome corresponding to the
equilibrium consisting of the infinite succession of posted
messages. Since each producer knows only the technology
prevailing in the period when he is alive, the process preserves
privacy. If in addition the message posted in each period is
finite dimensional, the process is informationally decentralized.
Period-by-period profit maximization using period-by-period
prices is a mechanism of this type; the message posted in each
period consists of the vector of prices for that period, and the
production plan for that period, both finite dimensional. The
object is to characterize all efficient programmes as equilibria
of such a mechanism. This would be an analogue of the
classical welfare theorems, but without the restriction to
mechanisms that use prices in their messages.

The main result is in the nature of an impossibility theorem.
If the technology is constant over time, and that fact is
common knowledge at the beginning, the problem is trivial
since knowledge of the technology in the first period
automatically means knowledge of it in every period. On the
other hand, if there is some period whose technology is not
known in the first period, then there is no finite dimensional
message that can characterize efficient programmes, and in
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that sense, production cannot be satisfactorily decentralized
over time.

Hurwicz and Weinberger (1984) have studied a model with
both producers and consumers. As with producers, there is a
consumer in each period, who lives for one period. The
consumer in each period has a one-period utility function,
which is not known by the producer; similarly the consumer
does not know the production function. The criterion of
optimality is the maximization of the sum of discounted
utilities over the infinite horizon. Hurwicz and Weinberger
show that there is no privacy preserving mechanism of the
type just described whose equilibria correspond to the set of
optimal programmes. It should be noted that their mechanism
requires that the first-period actions (production, consumption
and investment decisions) be made in the first period, and not
be subject to revision after the infinite process of verification is
completed. (On the other hand, under titonnement assump-
tions it may be possible to decentralize. In this model
tatonnement entails reconsideration ‘at infinity’.)

If attention is widened to efficient programmes, and if
technology is constant over time, there is an efficient
programme with a fixed ratio of consumption to investment.
This programme can be obtained as the equilibrium outcome
of a mechanism of the specified type. However, this
corresponds to only one side of the classical welfare theorems.
It says that the outcome of such a mechanism is efficient; but
it does not ensure that every efficient programme can be
realized as the outcome of such a mechanism. The latter
property fails in this model.

STANLEY REITER

See also INCENTIVE COMPATIBILITY; LINEAR PROGRAMMING; ORGANIZATION
THEORY; WELFARE ECONOMICS.
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